Nickel-Catalyzed Asymmetric Multiple-Component Tandem Coupling. Effects of Simple Monodentate Oxazolines as Chiral Ligands

Shin-ichi Ikeda,* Dong-Mei Cui, and Yoshiro Sato

Faculty of Pharmaceutical Sciences
Nagoya City University
Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

Received December 28, 1998
Optically active oxazolines have been extensively used as ligands for transition metals in asymmetric catalysts. ${ }^{1}$ However, most of them are bidentate ligands such as $\mathbf{1 - 4}$. We report here a new catalytic asymmetric reaction using monodentate chiral oxazoline ligands 5.

5a: $R^{1}={ }^{i} \mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Ph}$
5b: $\mathrm{R}^{1}={ }^{t} \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Ph}$
5c: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}$
5d: $\mathrm{R}^{1}={ }^{t} \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$
5e: $\mathrm{R}^{1}={ }^{\dagger} \mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Me}$
5f: $\mathrm{R}^{1}={ }^{t} \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$

Tandem (also described as domino or cascade) reactions, which permit complex molecules to be reasonably well-constructed in a one-pot assembly, are an important topic in organic synthesis. ${ }^{2}$ We recently found that a nickel complex catalyzed the reaction of enones, alkynes, organometallics, and $\mathrm{Me}_{3} \mathrm{SiCl}$ to provide the tandem coupling products with high regio- and stereoselectivities. ${ }^{3}$ We next planned an enantioselective reaction and started to examine the effects of various chiral ligands.

Enone $6 \mathbf{a}$ was treated with alkyne $7 \mathbf{7 a}, \mathrm{Me}_{2} \mathrm{Zn}$, and $\mathrm{Me}_{3} \mathrm{SiCl}$ in the presence of $\mathrm{Ni}(\mathrm{acac})_{2}(5 \mathrm{~mol} \%)$ and a chiral ligand (10 mol $\%$) in THF at room temperature (eq 1). ${ }^{4}$ After hydrolysis of the

obtained $\mathbf{8 a}$, the enantiomeric excess (ee) of the corresponding 9a was determined by chiral HPLC. Whereas phosphorus ligands

[^0]
Scheme 1

Scheme $\mathbf{2}^{a}$

${ }^{a}$ All substrates were added in succession to the catalytic system, and the mixture stirred for 2 h at room temperature. ${ }^{b}$ Total yield of regioisomeric mixture.
(BINAP, ${ }^{5 \mathrm{a}} 4 \%$ ee (43% yield); MeO-MOP, ${ }^{5 \mathrm{~b}} 0 \%$ ee (47% yield)) and bidentate oxazolines ($\mathbf{1},{ }^{6}<2 \%$ ee (32% yield); $\mathbf{2},{ }^{7}<2 \%$ ee (60% yield); $3,{ }^{7} 4 \%$ ee (20% yield); $\mathbf{4},{ }^{8} 0 \%$ ee (43% yield)) were not effective, the use of monodentate oxazolines 5^{9} induced enantioselection to give optically active 9a, i.e., $\mathbf{5 a}, \mathbf{3 3 \%}$ ee (42% yield); 5b, 34% ee (42% yield); $\mathbf{5 c}, 20 \%$ ee (55% yield); $\mathbf{5 d}$, 50% ee (31% yield); $\mathbf{5 e}, 43 \%$ ee (43% yield); $\mathbf{5 f}$, 65% ee (47% yield)). When a THF solution of $\mathbf{6 a}$ and $\mathrm{Me}_{3} \mathrm{SiCl}$ was added dropwise over 2 h to the reaction mixture including (S)-5f, both the ee and the chemical yield of 9 a further increased to 70 and 62%, respectively. To this end, DME was more efficient than THF (78% ee (57% yield)). Similar results were obtained when diglyme (74% ee (63% yield)) and triglyme (76% ee (61% yield)) were used as the solvent.
(4) The conjugate addition to $\mathbf{6}$ followed by the carbozincation of $\mathbf{7}$ did not occurred in the reaction. ${ }^{3 \mathrm{~b}}$ For the nickel-catalyzed carbozincation of arylsubstituted internal alkynes, see: Stüdenmann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 93.
(5) (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (b) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887.
(6) (a) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566. (b) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769. (c) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. T. Tetrahedron Lett. 1993, 34, 3149.
(7) Phaltz, A. Acc. Chem. Res. 1993, 26, 339.
(8) (a) Brunner, H.; Obermann, U. Chem. Ber. 1989, 122, 499. (b) Bolm, C.; Weickhardt, K.; Zehnder, M.; Ranff, T. Chem. Ber. 1991, 124, 1173.
(9) (a) Kurth, M. J.; Decker, O. H. W. J. Org. Chem. 1985, 50, 5789. (b) Leonard, W. R.; Romine, J. L.; Meyers, A. I. J. Org. Chem. 1991, 56, 1961. (c) Meyers, A. I.; Shipman, M. J. Org. Chem. 1991, 56, 7098. (d) Kamata, K.; Agata, I.; Meyers, A. I. J. Org. Chem. 1998, 63, 3113.

The results of the enantioselective tandem coupling with cyclic enones are shown in Scheme 1. Treatment with $\mathbf{6 b}$ in DME or diglyme gave $\mathbf{9 b}$ of modest enantiomeric purity. Interestingly, the enantioselectivity was improved to 81% ee by the use of triglyme. The ee of $9 \mathbf{c}^{10}$ derived from the reaction with $\mathbf{6 c}$ was lower than that of $\mathbf{9 a}$ and $\mathbf{9 b}$.

The enantioselective tandem coupling was performed also with terminal alkynes (Scheme 2). The reaction of $\mathbf{6 a}$ with 7b in DME gave $\mathbf{9 d}{ }^{11}$ of 50% ee with perfect regioselection. The enantiomeric purity was increased to 66%, when all of the reactants were successively added to the catalytic system. Almost the same enantioselectivity ($9 \mathrm{e}, 67 \%$ ee) was shown in the reaction with 7c.

The present catalytic system is applied to the asymmetric reaction with crotonaldehyde ($\mathbf{6 d}$). An alcohol 12, which was converted from the corresponding tandem coupling 9 f by treatment with NaBH_{4}, was obtained in 49% ee (Scheme 3).
(10) The absolute configuration of (+)-9c was determined to be R configuration by examination of the ${ }^{13} \mathrm{C}$ NMR spectra of diastereomeric ketal, which were obtained by the treatment of (+)-9c with ($2 R, 3 R$)-2,3-butandiol; see: Lemière, G. L.; Dommisse, R. A.; Lepoivre, J. A.; Alderweireldt, F. C.; Hiemstra, H.; Wynberg, H.; Jones, J. B.; Toone, E. J. J. Am. Chem. Soc. 1987, 109, 1363.
(11) The absolute configuration of (+)-9d was determined by following previous procedures: (i) $(+)-9 d$ was converted to $(+)$-3-propylcyclopentenone $\left(3-\mathrm{PrC}_{5} \mathrm{H}_{7} \mathrm{O}\right)^{11 \mathrm{a}}$ by desilylation and hydrogenation, and (ii) the stereochemistry of $(+)-\mathrm{PrC}_{5} \mathrm{H}_{7} \mathrm{O}$ was assumed to be R-configuration by comparison with the sign of rotation of $(R)-(+)-3-\mathrm{MeC}_{5} \mathrm{H}_{7} \mathrm{O},{ }^{11 \mathrm{~b}}(R)-(+)-3-\mathrm{EtC}_{5} \mathrm{H}_{7} \mathrm{O},{ }^{11 \mathrm{c}}$ and $(S)-(-$)-3- $\mathrm{BuC}_{5} \mathrm{H}_{7} \mathrm{O}$. ${ }^{11 \mathrm{~d}}$ (a) Racemate was already known, see: Wenkert, E.; Davis, L. L.; Mylari, B. L.; Solomon, M. F.; da Silva, R. R.; Shulman, S.; Warnet, R. J.; Ceccherelli, P.; Curini, M.; Pellicciari, R. J. Org. Chem. 1982, 47, 3242. (b) Kokke, W. C. M. C.; Varkevisser, F. A. J. Org. Chem. 1974, 39, 1535. (c) Posner, G. H.; Frye, L. L.; Hulce, M. Tetrahedron 1984, 40, 1401. (d) Taura, Y.; Tanaka, M.; Funakoshi, K.; Sakai, K. Tetrahedron Lett. 1989, 30, 6349.

Scheme 3

In summary, we have accomplished a new asymmetric catalytic multiple-component tandem coupling. ${ }^{12}$ It is worth noting that the catalysts involving simple monodentate chiral oxazolines $\mathbf{5}$, which have been previously used as valuable chiral auxiliaries, ${ }^{1}$ make the enantiofacial differentiation of $\mathbf{6}$ effectively occur to give optically active $\mathbf{8}$ (or 9).

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan. The authors thank Mr. Yoshihiro Ueda, Mr. Masahiro Tokunaga, and Ms. Tomomi Furusawa for help with the experiments.

Supporting Information Available: General procedure and spectral and analytical data of all new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9844231
(12) For the review including the examples of the enantioselective tandem reactions in the partially intermolecular and the fully intramolecular modes, see: Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371.

[^0]: (1) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
 (2) (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (b) Bunce, R. A. Tetrahedron 1995, 51, 13103. (c) Tietze, L. F. Chem. Rev. 1996, 96, 115.
 (3) (a) Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994, 116, 5975. (b) Ikeda, S.; Yamamoto, H.; Kondo, K.; Sato, Y. Organometallics 1995, 14, 5015. (c) Ikeda, S.; Kondo, K.; Sato, Y. J. Org. Chem. 1996, 61, 8248. (d) Cui, D.-M.; Yamamoto, H.; Ikeda, S.; Hatano, K.; Sato, Y. J. Org. Chem. 1998, 63, 2782.

